Brain metastases treatment guidelines

Brain metastases treatment guidelines

Please see the full-text version of this guideline https://www.cns.org/guidelines/browse-guidelines-detail/guidelines-treatment-of-adults-with-metastatic-bra-2 for the target population of each recommendation listed below.

SURGERY FOR METASTATIC BRAIN TUMORS AT NEW DIAGNOSIS QUESTION: Should patients with newly diagnosed metastatic brain tumors undergo Brain metastases surgeryStereotactic radiosurgery for brain metastases (SRS), or whole brain radiotherapy (WBRT)?

RECOMMENDATIONS:

Level of Evidence 1: Surgery + WBRT is recommended as first-line treatment in patients with single brain metastases with favorable performance status and limited extracranial disease to extend overall survivalmedian survival, and local control.

Level of Evidence 3: Surgery plus SRS is recommended to provide survival benefit in patients with metastatic brain tumors

Level of Evidence 3: Multimodal treatments including either surgery + WBRT + SRS boost or surgery + WBRT are recommended as alternatives to WBRT + SRS in terms of providing overall survival and local control benefits.

SURGERY AND RADIATION FOR METASTATIC BRAIN TUMORS QUESTION: Should patients with newly diagnosed metastatic brain tumors undergo surgical resection followed by WBRT, SRS, or another combination of these modalities?

RECOMMENDATIONS:

Level 1: Surgery + WBRT is recommended as superior treatment to WBRT alone in patients with single brain metastases.

Level 3: Surgery + SRS is recommended as an alternative to treatment with SRS alone to benefit overall survival.

Level 3: It is recommended that SRS alone be considered equivalent to surgery + WBRT.

SURGERY FOR RECURRENT METASTATIC BRAIN TUMORS QUESTION: Should patients with recurrent metastatic brain tumors undergo surgical resection?

RECOMMENDATIONS:

Level 3: Craniotomy is recommended as a treatment for intracranial recurrence after initial surgery or SRS.   SURGICAL TECHNIQUE AND RECURRENCE QUESTION A: Does the surgical technique (en bloc resection or piecemeal resection) affect recurrence?

RECOMMENDATION:

Level 3: En bloc resection of the tumor, as opposed to piecemeal resection, is recommended to decrease the risk of postoperative leptomeningeal disease when resecting single brain metastases.

QUESTION B:

Does the extent of surgical resection (gross total resection or subtotal resection) affect recurrence?

RECOMMENDATION:

Level 3: Gross total resection is recommended over subtotal resection in Recursive partitioning analysis class 1 class I patients to improve overall survival and prolong time to recurrence1)


1)

Nahed BV, Alvarez-Breckenridge C, Brastianos PK, Shih H, Sloan A, Ammirati M, Kuo JS, Ryken TC, Kalkanis SN, Olson JJ. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Role of Surgery in the Management of Adults With Metastatic Brain Tumors. Neurosurgery. 2019 Mar 1;84(3):E152-E155. doi: 10.1093/neuros/nyy542. PubMed PMID: 30629227.

Glioblastoma recurrence treatment

Glioblastoma recurrence treatment

There is no consensus as to the standard of care as no therapeutic options have produced substantial survival benefit for Glioblastoma recurrences (Glioblastomas) 1) 2).

A purely radiological diagnosis of recurrence or progression can be hampered by flaws induced by pseudoprogressionpseudoresponse, or radionecrosis

There is sufficient uncertainty and equipoise regarding the question of reoperation for patients with Glioblastoma recurrence to support the need for a randomized controlled trial 3).


Based on parameters like localization and tumor volume, patient’s Karnofsky Performance Score, time from initial diagnosis, and availability of alternative salvage therapies, reoperation can be considered as a treatment option to extend the overall survival and quality of life of the patient.

The achieved extent of resection of the relapsed tumor—especially with the intention of having a safe, complete resection of the enhancing tumor—most likely plays a crucial role in the ultimate outcome and prognosis of the patient, regardless of other modes of treatment. Validated scores to predict the prognosis after reoperation of a patient with a Glioblastoma recurrence can help to select suitable candidates for surgery. Safety issues and complication avoidance are pivotal to maximally preserving the patient’s quality of life. Besides a possible direct oncological effect, resampling of the recurrent tumor with detailed pathological and molecular analysis might have an impact on the development, testing, and validation of new salvage therapies 4).

Options include repeat surgical resection, repeat fractionated radiation, radiosurgery.

Bevacizumab (BEV) plus daily temozolomide (TMZ) as a salvage therapy has been recommended for recurrent glioma.


In a study, Hundsberger et al investigated which treatments are currently being used for recurrent Glioblastoma within a single nation (Switzerland) and how clinicians are deciding to use them 5)

The authors surveyed Swiss hospitals with comprehensive multidisciplinary neuro-oncology practices (neurosurgery, radiation therapy, medical neuro-oncology, and a dedicated neuro-oncology tumor board) about treatment recommendations for recurrent Glioblastoma. They identified relevant clinical decision-making criteria, called diagnostic nodes or “dodes,” and compared treatment recommendations using a decision-tree format.

Eight hospitals participated. The most common treatment options for recurrent Glioblastoma were combination repeat surgical resection with temozolomide or bevacizumab, monotherapy temozolomide or bevacizumab, and best supportive care. Alternative therapies, including radiotherapy, were less common. Despite widespread disagreement between centers in clinical decision-making, the decision-tree analysis found agreement (>63%) between most centers for only 4 specific clinical scenarios. Patients without an appropriate performance status were usually managed with the best supportive care. Patients with rapid recurrence, nonresectable tumors, unmethylated O(6)-methylguanine DNA methyltransferase (MGMT) promoter, and high-performance status were usually managed with bevacizumab. Patients with late recurrence, nonresectable tumors, overt clinical symptoms, methylated MGMT promoter, multifocal disease, and high-performance status were usually managed with repeat temozolomide therapy. Patients with late recurrence, nonresectable tumors, no clinical symptoms, methylated MGMT promoter, tumor multifocality, and high-performance status were usually managed with temozolomide. The findings of this study underscore the lack of effective first- and second-line treatments for Glioblastoma, and the interhospital variability in practice patterns is not surprising. It seems likely that similar heterogeneity would also be noted in a study of American neuro-oncology centers. It is interesting to note that despite the availability of an increasing number of molecular markers for Glioblastoma stratification, MGMT promoter methylation appears to be the only biological marker widely used across multiple centers in this study. It remains to be seen when and how broadly other markers such as the epidermal growth factor receptor variant III or isocitrate dehydrogenase mutations will be adopted for clinical decision-making. The authors are to be congratulated for identifying core clinical decision-making criteria that may be useful in future studies of recurrent Glioblastoma. This decision tree is an excellent reference for clinical trial development, and several active clinical trials already target the dudes identified in this study. Subsequent studies may help to determine whether similar decision trees exist in American neuro-oncologic centers now or will exist in the future 6).

Figure. A through F, clinical decision-making tree for Glioblastoma recurrence multiforme (Glioblastoma) based on clinical scenarios that achieved a majority recommendation (ie, at least 5 of 8 Swiss hospitals). BEV, bevacizumab; BSC, best supportive care; rGlioblastoma, Glioblastoma recurrence multiforme; TMZ, temozolomide. Modified with kind permission from Springer Science+Business Media: Journal of Neuro-Oncology, Patterns of care in Glioblastoma recurrence in Switzerland: a multicenter national approach based on diagnostic nodes (published online ahead of print October 12. 2015), Hundsberger T, Hottinger AF, Roelcke U, et al [doi: 10.1007/s11060-015-1957-0. Available at: http://link.springer.com/article/10.1007%2Fs11060-015-1957-0 ].

see Glioblastoma recurrence resection.

Temozolomide rechallenge is a treatment option for MGMT promoter-methylated Glioblastoma recurrence. Alternative strategies need to be considered for patients with progressive glioblastoma without MGMT promoter methylation 7).

see Bevacizumab for Glioblastoma recurrence.

Intrarterial chemotherapy is a viable methodology in recurrent Glioblastoma patients to prolong survival at the risk of procedure-related complications and in newly diagnosed patients with the benefit of decreased complications 8).

Low-dose fractionated radiotherapy LD-FRT and chemotherapy for recurrent/progressive Glioblastoma have a good toxicity profile and clinical outcomes, even though further investigation of this novel palliative treatment approach is warranted 9).

Second surgery plus carmustine wafers followed by intravenous fotemustine in twenty-four patients were analyzed. The median age was 53.6; all patients had KPS between 90 and 100; 19 patients (79%) performed a gross total resection > 98% and 5 (21%) a gross total resection > 90%. The median progression-free survival from second surgery was 6 months (95% CI 3.9-8.05) and the median OS was 14 months (95% CI 11.1-16.8 months). Toxicity was predominantly haematological: 5 patients (21%) experienced grade 3-4 thrombocytopenia and 3 patients (12%) grade 3-4 leukopenia.

This multimodal strategy may be feasible in patients with Glioblastoma recurrence, in particular, for patients in good clinical conditions 10).

The HSPPC-96 vaccine is safe and warrants further study of efficacy for the treatment of recurrent Glioblastoma. Significant pretreatment lymphopenia may impact the outcomes of immunotherapy and deserves additional investigation 11).

see Laser interstitial thermotherapy.

Galldiks et al monitored the metabolic effects of stereotaxy-guided LITT in a patient with a recurrent Glioblastoma using amino acid positron emission tomography (PET). Serial 11C-methyl-L-methionine positron emission tomography (MET-PET) and contrast-enhanced computed tomography (CT) were performed using a hybrid PET/CT system in a patient with recurrent Glioblastoma before and after LITT. To monitor the biologic activity of the effects of stereotaxy-guided LITT, a threshold-based volume of interest analysis of the metabolically active tumor volume (MET uptake index of ≥ 1.3) was performed. A continuous decline in metabolically active tumor volume after LITT could be observed. MET-PET seems to be useful for monitoring the short-term therapeutic effects of LITT, especially when patients have been pretreated with a multistep therapeutic regimen. MET-PET seems to be an appropriate tool to monitor and guide experimental LITT regimens and should be studied in a larger patient group to confirm its clinical value 12).

CP-673451 for glioblastoma recurrence.

Adjuvant lomustine to other chemotherapy may provide no obvious benefits for the glioblastoma recurrence treatment 13).

A more favorable prognosis following surgery for recurrence or progression is associated with younger age, smaller tumor volume (~50%), motor speech-middle cerebral artery scoring and preoperative Karnofsky performance score (KPS) >80% 14) 15).

Optimal treatment for recurrent High-grade glioma continues to evolve. Currently, however, there is no consensus in the literature on the role of reoperation in the management of these patients.

An analysis, of reoperation in patients with World Health Organization grade III or IV recurrent gliomas, focusing on how reoperation affects outcome, perioperative complications, and quality of life. An extensive literature review was performed through the use of the PubMed and Ovid Medline databases for January 1980 through August 2013. A total 31 studies were included in the final analysis. Of the 31 studies with significant data from single or multiple institutions, 29 demonstrated a survival benefit or improved functional status after reoperation for recurrent high-grade glioma. Indications for reoperation included new focal neurological deficits, tumor mass effect, signs of elevated intracranial pressure, headaches, increased seizure frequency, and radiographic evidence of tumor progression. Age was not a contraindication to reoperation. Time interval of at least 6 months between operations and favorable performance status (Karnofsky Performance Status score ≥70) were important predictors of benefit from reoperation. Extent of resection at reoperation improved survival, even in patients with subtotal resection at initial operation. Careful patient selection such as avoiding those individuals with poor performance status and bevacizumab within 4 weeks of surgery is important. Although limited to retrospective analysis and patient selection bias, mounting evidence suggests a survival benefit in patients receiving a reoperation at the time of high-grade glioma recurrence 16).

Twenty patients with recurrent glioma were treated with BEV (5-10 mg/kg, i.v. every 2 weeks) plus daily TMZ (daily, 50 mg/m2). The treatment response was evaluated via the RANO criteria. HRQL were measured using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire core 30 (QLQ-C30) and Brain Module (QLQ-BN20).

Twenty patients received a total of 85 cycles of BEV with a median number of 4 cycles (range: 2-10). No patients showed complete response (CR) to treatment. Twelve patients had partial response (PR), stable disease (SD) in 5 patients with, and 3 patients showed progressive disease (PD). In the functioning domains of QLQ-C30, physical functioning, cognitive functioning and emotional functioning significantly improved after the second cycle of BEV compared to baseline, with the mean score of 45.0 vs. 64.0 (p = 0.020), 55.8 vs. 71.7 (p = 0.020) and 48.3 vs. 67.5 (p = 0.015), respectively. In the symptom scales, the scores of pain and nausea/vomiting significantly decreased compared to baseline from the mean score of 39.1 to 20.0 (p = 0.020) and 29.2 to 16.7 (p = 0.049), respectively. Score of global health status also increased from 47.5 to 63.3 (p = 0.001). As determined with the QLQ-BN20, motor dysfunction (43.3 vs. 25.0, p = 0.021), weakness of legs (36.7 vs. 18.3, p = 0.049), headache (38.3 vs. 20.0, p = 0.040), and drowsiness (50.0 vs. 30.0, p = 0.026) after the second cycle of BEV also significantly improved compared to baseline.

BEV plus daily TMZ as a salvage therapy improved HRQL in patients with recurrent glioma 17).

Quick-Weller et al. performed tumour resections in seven patients with rGlioblastoma, combining 5-ALA (20 mg/kg bodyweight) with iMRI (0.15 T). Radiologically complete resections were intended in all seven patients.

They assessed intraoperative fluorescence findings and compared these with intraoperative imaging. All patients had early postoperative MRI (3 T) to verify final iMRI scans and received adjuvant treatment according to interdisciplinary tumour board decision.

Median patient age was 63 years. Median KPS score was 90, and median tumour volume was 8.2 cm(3). In six of seven patients (85%), 5-ALA induced fluorescence of tumour-tissue was detected intraoperatively. All tumours were good to visualise with iMRI and contrast media. One patient received additional resection of residual contrast enhancing tissue on intraoperative imaging, which did not show fluorescence. Radiologically complete resections according to early postoperative MRI were achieved in all patients. Median survival since second surgery was 7.6 months and overall survival since diagnosis was 27.8 months.

5-ALA and iMRI are important surgical tools to maximise tumour resection also in rGlioblastoma. However, not all rGlioblastomas exhibit fluorescence after 5-ALA administration. They propose the combined use of 5-ALA and iMRI in the surgery of rGlioblastoma 18).

In some case series reoperation extends survival by an additional 36 weeks in patients with glioblastoma, and 88 weeks in anaplastic astrocytoma 19) 20) (duration of high-quality survival was 10 weeks and 83 weeks, respectively, and was lower with pre-op Karnofsky score < 70). In addition to Karnofsky performance score, significant prognosticators for response to repeat surgery include: age and time from the first operation to reoperation (shorter times → worse prognosis) 21). Morbidity is higher with reoperation (5–18%); the infection rate is ≈ 3x that for first operation, wound dehiscence is more likely


1)

Weller M, Cloughesy T, Perry JR, Wick W. Standards of care for treatment of Glioblastoma recurrence–are we there yet? Neuro Oncol. 2013 Jan;15(1):4-27. doi: 10.1093/neuonc/nos273. Epub 2012 Nov 7. Review. PubMed PMID: 23136223; PubMed Central PMCID: PMC3534423.
2)

Lukas RV, Mrugala MM (2017) Pivotal trials for infiltrating gliomas and how they affect clinical practice. Neuro Oncol Pract 4:209–219
3)

Patel M, Au K, Davis FG, Easaw JC, Mehta V, Broad R, Chow MMC, Hockley A, Kaderali Z, Magro E, Nataraj A, Scholtes F, Chagnon M, Gevry G, Raymond J, Darsaut TE. Clinical Uncertainty and Equipoise in the Management of Glioblastoma recurrence. Am J Clin Oncol. 2021 Mar 29. doi: 10.1097/COC.0000000000000812. Epub ahead of print. PMID: 33782334.
4)

Dejaegher J, De Vleeschouwer S. Recurring Glioblastoma: A Case for Reoperation? In: De Vleeschouwer S, editor. Glioblastoma [Internet]. Brisbane (AU): Codon Publications; 2017 Sep 27. Chapter 14. Available from http://www.ncbi.nlm.nih.gov/books/NBK469991/ PubMed PMID: 29251867.
5)

Hundsberger T, Hottinger AF, Roelcke U, et al.. Patterns of care in Glioblastoma recurrence in Switzerland: a multicentre national approach based on diagnostic nodes [published online ahead of print October 12, 2015]. J Neuro Oncol. doi: 10.1007/s11060-015-1957-0. Available at: http://link.springer.com/article/10.1007%2Fs11060-015-1957-0.
6)

Zussman BM, Engh JA. Patterns of Care and Clinical Decision Making for Glioblastoma recurrence Multiforme. Neurosurgery. 2016 Feb;78(2):N12-4. doi: 10.1227/01.neu.0000479889.72124.20. PubMed PMID: 26779791.
7)

Weller M, Tabatabai G, Kästner B, Felsberg J, Steinbach JP, Wick A, Schnell O, Hau P, Herrlinger U, Sabel MC, Wirsching HG, Ketter R, Bähr O, Platten M, Tonn JC, Schlegel U, Marosi C, Goldbrunner R, Stupp R, Homicsko K, Pichler J, Nikkhah G, Meixensberger J, Vajkoczy P, Kollias S, Hüsing J, Reifenberger G, Wick W; DIRECTOR Study Group. MGMT Promoter Methylation Is a Strong Prognostic Biomarker for Benefit from Dose-Intensified Temozolomide Rechallenge in Progressive Glioblastoma: The DIRECTOR Trial. Clin Cancer Res. 2015 May 1;21(9):2057-64. doi: 10.1158/1078-0432.CCR-14-2737. Epub 2015 Feb 5. PubMed PMID: 25655102.
8)

Theodotou C, Shah AH, Hayes S, Bregy A, Johnson JN, Aziz-Sultan MA, Komotar RJ. The role of intra-arterial chemotherapy as an adjuvant treatment for glioblastoma. Br J Neurosurg. 2014 Jan 16. [Epub ahead of print] PubMed PMID: 24432794.
9)

Balducci M, Diletto B, Chiesa S, D’Agostino GR, Gambacorta MA, Ferro M, Colosimo C, Maira G, Anile C, Valentini V. Low-dose fractionated radiotherapy and concomitant chemotherapy for recurrent or progressive glioblastoma : Final report of a pilot study. Strahlenther Onkol. 2014 Jan 17. [Epub ahead of print] PubMed PMID: 24429479.
10)

Lombardi G, Della Puppa A, Zustovich F, Pambuku A, Farina P, Fiduccia P, Roma A, Zagonel V. The combination of carmustine wafers and fotemustine in recurrent glioblastoma patients: a monoinstitutional experience. Biomed Res Int. 2014;2014:678191. doi: 10.1155/2014/678191. Epub 2014 Apr 9. PubMed PMID: 24812626.
11)

Bloch O, Crane CA, Fuks Y, Kaur R, Aghi MK, Berger MS, Butowski NA, Chang SM, Clarke JL, McDermott MW, Prados MD, Sloan AE, Bruce JN, Parsa AT. Heat-shock protein peptide complex-96 vaccination for Glioblastoma recurrence: a phase II, single-arm trial. Neuro Oncol. 2013 Dec 12. [Epub ahead of print] PubMed PMID: 24335700.
12)

Galldiks N, von Tempelhoff W, Kahraman D, Kracht LW, Vollmar S, Fink GR, Schroeter M, Goldbrunner R, Schmidt M, Maarouf M. 11C-methionine positron emission tomographic imaging of biologic activity of a Glioblastoma recurrence treated with stereotaxy-guided laser-induced interstitial thermotherapy. Mol Imaging. 2012 Jul-Aug;11(4):265-71. PubMed PMID: 22954142.
13)

Fu X, Shi D, Feng Y. The Efficacy and Safety of Adjuvant Lomustine to Chemotherapy for Recurrent Glioblastoma: A Meta-analysis of Randomized Controlled Studies. Clin Neuropharmacol. 2022 Nov-Dec 01;45(6):162-167. doi: 10.1097/WNF.0000000000000525. PMID: 36383914.
14)

Barbagallo GM, Jenkinson MD, Brodbelt AR. ‘Recurrent’ glioblastoma multiforme, when should we reoperate? Br J Neurosurg. 2008 Jun;22(3):452-5. doi: 10.1080/02688690802182256. Review. PubMed PMID: 18568742.
15)

Park JK, Hodges T, Arko L, Shen M, Dello Iacono D, McNabb A, Olsen Bailey N, Kreisl TN, Iwamoto FM, Sul J, Auh S, Park GE, Fine HA, Black PM. Scale to predict survival after surgery for Glioblastoma recurrence multiforme. J Clin Oncol. 2010 Aug 20;28(24):3838-43. doi: 10.1200/JCO.2010.30.0582. Epub 2010 Jul 19. PubMed PMID: 20644085; PubMed Central PMCID: PMC2940401.
16)

Hervey-Jumper SL, Berger MS. Reoperation for recurrent high-grade glioma: a current perspective of the literature. Neurosurgery. 2014 Nov;75(5):491-9; discussion 498-9. doi: 10.1227/NEU.0000000000000486. PubMed PMID: 24991712.
17)

Liu Y, Feng F, Ji P, Liu B, Ge S, Yang C, Lou M, Liu J, Li B, Gao G, Qu Y, Wang L. Improvement of health related quality of life in patients with recurrent glioma treated with bevacizumab plus daily temozolomide as the salvage therapy. Clin Neurol Neurosurg. 2018 Mar 27;169:64-70. doi: 10.1016/j.clineuro.2018.03.026. [Epub ahead of print] PubMed PMID: 29631109.
18)

Quick-Weller J, Lescher S, Forster MT, Konczalla J, Seifert V, Senft C. Combination of 5-ALA and iMRI in re-resection of Glioblastoma recurrence. Br J Neurosurg. 2016 Jun;30(3):313-7. doi: 10.3109/02688697.2015.1119242. Epub 2016 Jan 8. PubMed PMID: 26743016.
19)

Harsh GR, Levin VA, Gutin PH, et al. Reoperation for Glioblastoma recurrence and Anaplastic Astrocytoma. Neurosurgery. 1987; 21:615–621
20)

Ammirati M, Galicich JH, Arbit E, et al. Reoperation in the Treatment of Recurrent Intracranial Malignant Gliomas. Neurosurgery. 1987; 21:607–614
21)

Brem H, Piantadosi S, Burger PC, et al. Placebo- Controlled Trial of Safety and Efficacy of Intraoperative Controlled Delivery by Biodegradable Polymers of Chemotherapy for Recurrent Gliomas. Lancet. 1995; 345:1008–1012

Vestibular schwannoma treatment

Vestibular schwannoma treatment

Optimal decision making in new diagnosed vestibular schwannoma remains a matter of debate. For small- to medium-sized lesions (Koos grading scale I–III), the options are radiosurgery (RS), microsurgery, or a “wait and-scan” approach 1).

This is mainly based on the hospital setting, as well as surgeon’s preference. It is worth noting that comparative studies advocate that GKS compares favorably with microsurgery, with high local tumor control, much lower rate of facial nerve palsy, and much higher rate of serviceable hearing preservation 2) 3) 4) 5) 6).

see Vestibular schwannoma conservative treatment.

see Fractionated stereotactic radiotherapy for vestibular schwannoma

see Vestibular schwannoma radiosurgery.

see Vestibular schwannoma surgery.


Subjects presented to the Department of Otolaryngology-Head and Neck Surgery and the Department of Neurosurgery at the Johns Hopkins University, Baltimore, Maryland for management of unilateral vestibular schwannoma from 1997 through 2007, with at least two visits within the first year of presentation. The proportion of patients for whom initial management consisted of observation, surgical resection, or radiation therapy was determined, and the relative influence of study year, patient age, hearing status, and tumor size was analyzed.

RESULTS: Over the study period there was an increase in the proportion of cases that were observed with follow-up scanning (10.5% to 28.0%) and recommended for radiation (0% to 4.0%), whereas the proportion of operated cases declined (89.5% to 68.0%). There were no changes in mean age or hearing status at diagnosis, but mean tumor size declined significantly. Compared to those undergoing surgery, patients choosing observation and radiation therapy were on average 11.7 and 4.5 years older, respectively. Tumors that were surgically removed were on average 11.6 mm larger than those that were observed. The increasing frequency over time of observation relative to surgery was significant even after controlling for age, hearing status, and tumor size.

CONCLUSIONS: Among patients managed by our center, there has been a significant shift in management of vestibular schwannomas over the last decade, with increasing tendency towards observation. This trend implies changing provider philosophy and patient expectations 7).


Patients with VS completed a voluntary survey over a 3-month period. Setting Surveys were distributed online through email, Facebook, and member website. Subjects and Methods All patients had a diagnosis of VS and were members of the Acoustic Neuroma Association (ANA). A total of 789 patients completed the online survey. Results Of the 789 participants, 474 (60%) cited physician recommendation as a significant influential factor in deciding treatment. In our sample, 629 (80%) saw multiple VS specialists and 410 (52%) sought second opinions within the same specialty. Of those who received multiple consults, 242 (59%) of patients reported receiving different opinions regarding treatment. Those undergoing observation spent significantly less time with the physician (41 minutes) compared to surgery (68 minutes) and radiation (60 minutes) patients ( P < .001). A total of 32 (4%) patients stated the physician alone made the decision for treatment, and 29 (4%) felt they did not understand all possible treatment options before final decision was made. Of the 414 patients who underwent surgery, 66 (16%) felt they were pressured by the surgeon to choose surgical treatment. Conclusion Deciding on a proper VS treatment for patients can be complicated and dependent on numerous clinical and individual factors. It is clear that many patients find it important to seek second opinions from other specialties. Moreover, second opinions within the same specialty are common, and the number of neurotologists consulted correlated with higher decision satisfaction 8).


From a total of 8330 patients (average age 54.7 years, 51.9% female) were analyzed and from 2004 to 2011, there was a statistically significant decrease in tumor size category at time of diagnosis (P < .01). Overall, 3982 patients (48%) received primary microsurgery, 1978 (24%) radiation therapy alone, and 2370 (29%) observation. Within the microsurgical cohort, 732 (18%) underwent subtotal resection, and of those, 98 (13.4%) received postoperative radiation therapy. Multivariable regression revealed that surgical treatment was more common in younger patients and larger tumor size categories (P < .05). Management trend analysis revealed that microsurgery was used less frequently over time (P < .0001), observation was used more frequently (P < .0001), and the pattern of radiation therapy remained unchanged. Linear regression was used to create an equation that was applied to predict future management practices. These data predict that by 2026, half of all cases of VS will be managed initially with observation.

While the incidence of VS has remained steady, tumor size at time of diagnosis has decreased over time. Within the United States there has been a clear, recent evolution in management toward observation 9).

Rapid progression of residual vestibular schwannoma following subtotal surgical resection has an underlying immune etiology that may be virally originating; and despite an abundant adaptive immune response, T-cell immunosenescence may be associated with rapid progression of VS. These findings provide a rationale for clinical trials evaluating immunotherapy in patients with rapidly progressing VS 10)


1)

Kondziolka D, Mousavi SH, Kano H, Flickinger JC, Lunsford LD. The newly diagnosed vestibular schwannoma: radiosurgery, resection, or observation? Neurosurg Focus 2012;33(03):E8
2)

Pollock BE, Lunsford LD, Kondziolka D, et al. Outcome analysis of acoustic neuroma management: a comparison of microsurgery and stereotactic radiosurgery. Neurosurgery 1995;36(01):215- –224, discussion 224–229
3)

Régis J, Pellet W, Delsanti C, et al. Functional outcome after Gamma knife radiosurgery or microsurgery for vestibular schwannomas. J Neurosurg 2002;97(05):1091–1100
4)

Myrseth E, Møller P, Pedersen PH, Vassbotn FS, Wentzel-Larsen T, Lund-Johansen M. Vestibular schwannomas: clinical results and quality of life after microsurgery or Gamma Knife radiosurgery. Neurosurgery 2005;56(05):927–935, discussion 927– 935
5)

Myrseth E, Møller P, Pedersen PH, Lund-Johansen M. Vestibular schwannoma: surgery or Gamma Knife radiosurgery? A prospective, nonrandomized study. Neurosurgery 2009;64(04):654–661, discussion 661–663
6)

Pollock BE, Driscoll CL, Foote RL, et al. Patient outcomes after vestibular schwannoma management: a prospective comparison of microsurgical resection and stereotactic radiosurgery. Neurosurgery 2006;59(01):77–85, discussion 77–85
7)

Tan M, Myrie OA, Lin FR, Niparko JK, Minor LB, Tamargo RJ, Francis HW. Trends in the management of vestibular schwannomas at Johns Hopkins 1997-2007. Laryngoscope. 2010 Jan;120(1):144-9. doi: 10.1002/lary.20672. PubMed PMID: 19877188.
8)

Moshtaghi O, Goshtasbi K, Sahyouni R, Lin HW, Djalilian HR. Patient Decision Making in Vestibular Schwannoma: A Survey of the Acoustic Neuroma Association. Otolaryngol Head Neck Surg. 2018 Feb 1:194599818756852. doi: 10.1177/0194599818756852. [Epub ahead of print] PubMed PMID: 29436268.
9)

Carlson ML, Habermann EB, Wagie AE, Driscoll CL, Van Gompel JJ, Jacob JT, Link MJ. The Changing Landscape of Vestibular Schwannoma Management in the United States-A Shift Toward Conservatism. Otolaryngol Head Neck Surg. 2015 Jun 30. pii: 0194599815590105. [Epub ahead of print] PubMed PMID: 26129740.
10)

Amit M, Xie T, Gleber-Netto FO, Hunt PJ, Mehta GU, Bell D, Silverman DA, Yaman I, Ye Y, Burks JK, Fuller GN, Gidley PW, Nader ME, Raza SM, DeMonte F. Distinct immune signature predicts progression of vestibular schwannoma and unveils a possible viral etiology. J Exp Clin Cancer Res. 2022 Oct 4;41(1):292. doi: 10.1186/s13046-022-02473-4. PMID: 36195959.
WhatsApp WhatsApp us
%d bloggers like this: