Ventriculoperitoneal shunt abdominal complications

Ventriculoperitoneal shunt abdominal complications

Abdominal complications include peritonitisascites, bowel and abdominal wall perforation, and inguinal hernias.

Abdominal complications are reported in 5–47 % of ventriculoperitoneal shunt cases 1) 2).

Ascites

Abdominal pseudocyst

Bowel perforation

Hydrocele

Shunt extrusion

Shunt migration

CSF leaks

Viscous perforations

Protrusion of the catheter from the anus

Spontaneous knotting of the peritoneal catheter is a rare complication of the VP shunt 3).

Peritoneal catheter knot formation

Liver abscess

Pyogenic liver abscess in Taiwan is most commonly due to Klebsiella pneumoniae infection in diabetic patients, and less frequently due to biliary tract infections. Liver abscess caused by ventriculoperitoneal (VP) shunt is very rare. We report a case of liver abscess caused by methicillin-resistant Staphylococcus aureus (MRSA), which developed as a complication of an infected VP shunt. A 53-year-old woman, who had shad a VP shunt implanted 3 months previously for hydrocephalus due to intracranial hemorrhage, presented with fever off and on, drowsiness and seizure attacks for 1 week. Computed tomography (CT) of the brain showed only mild right-sided hydrocephalus, and was negative for intracranial hemorrhage and intracranial mass. Analysis of cerebrospinal fluid showed significant pleocytosis and hypoglycorrhachia. CT scan of the abdomen disclosed a huge abscess in the right lobe of the liver. Cultures of both the cerebrospinal fluid and aspirated liver abscess isolated MRSA. The patient was treated with intraventricular and intravenous vancomycin, intravenous teicoplanin and oral rifampicin, followed by oral chloramphenicol and rifampicin. Percutaneous drainage of the liver abscess and externalization of the VP shunt were performed. The liver abscess had resolved almost completely on ultrasonography after 2 weeks of therapy. Liver abscess in patients with a VP shunt should be considered a possible abdominal complication of the VP shunt, and may be caused by unusual pathogens. Diagnosis requires CT scan and direct aspiration and culture of the liver abscess. Treatment requires management of both the liver abscess and the infected shunt 4).

Liver pseudocyst

The formation of a liver pseudocyst is a rare occurrence, and its mechanisms are still largely unknown.

Mallereau et al. reported the case of a 69-year-old woman with a ventriculoperitoneal shunt, inserted for the management of hydrocephalus after aneurysmal subarachnoid hemorrhage, presenting to the Accident and Emergency for acute cholecystitis. Besides confirming the diagnosis, an ultrasound investigation revealed the presence of a hepatic cyst. Conservative treatment with antibiotics and non-steroidal anti-inflammatory drugs was performed with favorable outcomes and resorption of the cyst. Interestingly the patient kept on presenting several similar episodes managed well by non-steroidal anti-inflammatory drugs alone, each of them associated with transient symptoms and signs of ventriculoperitoneal shunt malfunction. Computerized Tomography brain and lumbar puncture were normal, whereas the CT abdomen showed the ventriculoperitoneal shunt distal catheter passing through the hepatic cyst. Given the ventriculoperitoneal shunt malfunction, in the context of an infective/inflammatory process, a conversion of the ventriculoperitoneal shunt into a ventriculoatrial shunt was carried out with a successful clinical outcome.

Based on current literature they propose a clinical and radiological classification of such pseudocysts related to ventriculoperitoneal shunt. Clinical presentation, diagnostic findings, and management options are proposed for each type: purely infective, spurious (infective/inflammatory), and purely inflammatory. In the absence of system infection, a simple replacement of the distal catheter seems to be the best solution 5).

References

1)

Chung J, Yu J, Joo HK, Se JN, Kim M. Intraabdominal complications secondary to ventriculoperitoneal shunts: CT findings and review of the literature. American Journal of Roentgenology. 2009;193(5):1311–1317.
2)

Murtagh FR, Quencer RM, Poole CA. Extracranial complications of cerebrospinal fluid shunt function in childhood hydrocephalus. American Journal of Roentgenology. 1980;135(4):763–766.
3)

Borcek AO, Civi S, Golen M, Emmez H, Baykaner MK. An unusual ventriculoperitoneal shunt complication: spontaneous knot formation. Turkish Neurosurgery. 2012;22(2):261–264.
4)

Shen MC, Lee SS, Chen YS, Yen MY, Liu YC. Liver abscess caused by an infected ventriculoperitoneal shunt. J Formos Med Assoc. 2003 Feb;102(2):113-6. PubMed PMID: 12709741.
5)

Mallereau CH, Ganau M, Todeschi J, Addeo PF, Moliere S, Chibbaro S. Relapsing-Remitting Hepatic Pseudo-Cyst: a great simulator of malfunctioning ventriculoperitoneal shunt. Case report and proposal of a new classification. Neurochirurgie. 2020 Oct 10:S0028-3770(20)30399-4. doi: 10.1016/j.neuchi.2020.08.001. Epub ahead of print. PMID: 33049283.

Top Read: Ventriculocisternostomy versus ventriculoperitoneal shunt in the treatment of hydrocephalus: A retrospective, long-term observational study.

Clin Neurol Neurosurg. 2014 Jul;122:92-6. doi: 10.1016/j.clineuro.2014.03.022. Epub 2014 Mar 26.

Ventriculocisternostomy versus ventriculoperitoneal shunt in the treatment of hydrocephalus: A retrospective, long-term observational study.

Abstract

OBJECTIVE:

The goal of this study was the retrospective analysis of long-term data on endoscopic ventriculocisternostomy versus ventriculoperitoneal shunt placement in the treatment of hydrocephalus.

METHODS:

A total of 159 patients were included in the study. One hundred and twenty-three patients received a ventriculoperitoneal shunt, whereas 36 patients were treated with an endoscopic procedure. Only patients with a postoperative observation period of at least 3 years were included in the analyses of the long-term data. In addition to general patient and operation data, the number and frequency of perioperative complications (infections, dysfunctions) and the frequency and type of necessary revision operations were collected.

RESULTS:

The average observation period was 69 months for both groups. The risk of operative revision was significantly elevated in the shunt group despite a comparable observation period. Whereas 86.11% of the endoscopy group did not require an operative revision, that only applied to 68.85% of the shunt group. The complication rate was 42.7% in the shunt group per procedure, which was clearly higher than in the endoscopy group at only 9.4%.

CONCLUSION:

The risk of operative revision and/or complications is significantly lower in the endoscopic ventriculocisternostomy group compared to the ventriculoperitoneal shunt group. Given the appropriate indication, endoscopic ventriculocisternostomy is thus the treatment of choice.

WhatsApp WhatsApp us
%d bloggers like this: